Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368
L. C. R. Andrade, ${ }^{\text {a }}$ J. A. Paixão, ${ }^{\text {a }}$ M. J. M. de Almeida, ${ }^{\text {a }}$ E. J. Tavares da Silva ${ }^{\text {b }}$ and F. M. Fernandes Roleira ${ }^{\text {b }}$ *
${ }^{\text {a }}$ CEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516 Coimbra, Portugal, and
${ }^{\text {b }}$ Centro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, P-3000-295 Coimbra, Portugal

Correspondence e-mail: jap@pollux.fis.uc.pt

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.036$
$w R$ factor $=0.110$
Data-to-parameter ratio $=8.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
$3 \alpha, 7 a, 12 \alpha$-Triformyloxy-24-nor-5 β-chol-22-ene

The title compound, $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{6}$, has a cis junction between two of the six-membered rings $(A$ and $B)$. All three of the sixmembered rings have chair conformations that are slightly flattened and the five-membered ring has an unusual 13β envelope conformation. The 7α and 12α ring substituents are both axial and the 3α and 17β groups are equatorial and pseudo-equatorial, respectively. The 3α-formyloxy group is involved in one weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond, which links the molecules into dimers in a head-to-head fashion.

Comment

Bile acids, such as cholic acid, have many uses in supramolecular chemistry (Davis, 1993). The crystallographic study of these receptors and their synthetic intermediates improves the understanding of molecular-recognition principles. In this context, the 3β isomer of the title compound, (I), has already been studied (Andrade et al., 2004). In an attempt to construct a cholic acid-based synthetic receptor, (I) has been synthesized as an intermediate according to the method reported by Davis \& Walsh (1996).

(I)

An ORTEPII (Johnson, 1976) plot of (I) is shown in Fig. 1. The three formyloxy groups have $3 \alpha, 7 \alpha$ and 12α configurations. Average values for bond lengths are in good agreement with reported values (Allen et al., 1987).

The distance between the terminal atoms $\mathrm{O} 31 A$ and C 23 is 13.841 (8) \AA, and the $\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$ pseudo-torsion angle $\left[-1.6(2)^{\circ}\right]$ indicates that the molecule is not twisted. Rings $A(\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 10), B(\mathrm{C} 5-\mathrm{C} 10)$ and $C(\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 11-\mathrm{C} 14)$ have slightly distorted chair conformations, with average torsion angles of $56(2), 53(2)$ and $53(2)^{\circ}$, respectively, as shown by the values of the θ puckering parameter (Cremer \& Pople, 1975) of 174.7 (3), 7.5 (2) and 4.5 (2) ${ }^{\circ}$ for rings A, B and C, respectively. A cis A / B ring junction characteristic of the 5β configuration is evidenced by the bowing angle between ring A and the least-squares plane of the remaining rings [56.57 (9) ${ }^{\circ}$]. The five-membered ring $D(\mathrm{C} 13-\mathrm{C} 17)$ assumes a

Received 4 April 2006 Accepted 7 April 2006

Figure 1
A drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
13β-envelope conformation [puckering parameters $q_{2}=$ 0.480 (3) \AA and $\varphi_{2}=-175.7$ (4) ${ }^{\circ}$; pseudo-rotation (Altona et al., 1968) and asymmetry parameters (Duax \& Norton, 1975): $\Delta=26.2$ (4), $\varphi_{\mathrm{m}}=48.6(2), \Delta C_{\mathrm{s}}(14)=30.4$ (3), $\Delta C_{2}(13,14)=$ $\left.17.5(3), \Delta C_{\mathrm{s}}(13)=5.4(3)^{\circ}\right]$. This unusual ring conformation is different from that found in the 3β isomer (Andrade et al., 2004).

The 3α substituent is equatorial, with an angle of $70.86(19)^{\circ}$, and the two 7α and 12α substituents are axial (Luger \& Bülow, 1983), with angles of 7.91 (19) and 4.71 (18) ${ }^{\circ}$, respectively (the angles are between the substituent bond to the ring and the normal to the mean plane of the ring atoms). The 17β chain is pseudo-equatorial. The orientation of the C5-C17 reference plane relative to the C17/C20/C21 and C20/ C22/C23 least-squares planes is characterized by angles of 26.1 (4) and $86.8(3)^{\circ}$, respectively, with the angle between these two planes being 89.4 (3) ${ }^{\circ}$. The C $17-\mathrm{C} 20-\mathrm{C} 22-\mathrm{C} 23$ $\left[-116.1(4)^{\circ}\right]$ and $\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 22-\mathrm{C} 23\left[119.6(5)^{\circ}\right]$ torsion angles are similar to those found for the 3β isomer $[-109.7$ (3) and 126.7 (3) ${ }^{\circ}$; Andrade et al., 2004].

The intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network of (I) (Table 1) is also similar to that of the β-epimer.

Experimental

The title compound was prepared according to previously described procedures, starting from the formylation of cholic acid (Tserng \& Klein, 1977) with formic and perchloric acids, followed by oxidative decarboxylation (Concepción et al., 1986) with iodosobenzene diacetate. Crystals of (I) suitable for X-ray analysis were obtained from an ethyl acetate solution by slow evaporation.

Crystal data

```
\(\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{6}\)
\(M_{r}=446.56\)
Monoclinic, \(P 2_{1}\)
\(a=10.8379\) (11) £
\(b=8.3682\) (11) \(\AA\)
\(c=13.621\) (8) \(\AA\)
\(\beta=95.92\) (3) \({ }^{\circ}\)
\(V=1228.7(8) \AA^{3}\)
```


Data collection

Enraf-Nonius MACH-3 diffractometer
Profile data from $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.774, T_{\text {max }}=0.873$
5138 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0576 P)^{2}\right. \\
& +0.1662 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.13 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.11 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0046 \text { (7) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O} 31 A^{\mathrm{i}}$	0.97	2.59	3.5331	164
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 7$	0.97	2.43	3.0662	122
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 12$	0.98	2.54	2.9286	104
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 12$	0.98	2.48	2.8947	105
C22-H22 \cdots O31 B^{ii}	0.93	2.57	3.3366	140
C31A-H31B \cdots O121ii	1.13	2.59	3.6611	158
C121-H121 \cdots O31 B^{i}	0.93	2.42	3.2211	144

Symmetry codes: (i) $-x, y-\frac{1}{2},-z$; (ii) $x+1, y-1, z$; (iii) $x-1, y, z$.

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and 0.98 (for methine H), 0.93 and 0.97 (for methylene H) and $0.96 \AA$ (for methyl H), and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C})$, where $x=1.5$ for methyl H and $x=1.2$ for all other H. Friedel pairs were merged because the anomalous dispersion of the light atoms at the $\mathrm{Cu} K \alpha$ wavelength was negligible, and thus the absolute configuration was not determined from the X-ray data. However, the configuration was known from the synthetic route. In the 3α branch, one O atom, one C atom and one H atom were refined with statistical disorder over two positions, with site occupancies of 0.613 (8) (for $\mathrm{O} 31 A, \mathrm{C} 31 A$ and $\mathrm{H} 31 A$) and 0.387 (8) (for $\mathrm{O} 31 B, \mathrm{C} 31 B$ and H31B).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: PLATON (Spek, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This work was supported by Fundação para a Ciência e Tecnologia.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Andrade, L. C. R., Paixão, J. A., de Almeida, M. J. M., Tavares da Silva, E. J., Sá e Melo, M. L. \& Fernandes Roleira, F. M. (2004). Acta Cryst. C60, o82o83.

organic papers

Concepción, J. I., Francisco, C. G., Freire, R., Hernández, R., Salazar, J. A. \& Suárez, E. (1986). J. Org. Chem. 51, 402-404
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Davis, A. P. (1993). Chem. Soc. Rev. 22, 243-253.
Davis, A. P. \& Walsh, J. J. (1996). J. Chem. Soc. Chem. Commun. pp. 449-451.
Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA
Luger, P. \& Bülow, R. (1983). J. Appl. Cryst. 16, 431-432.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tserng, K.-Y. \& Klein, P. D. (1977). Steroids, 29, 635-648.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

