Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

L. C. R. Andrade,^a J. A. Paixão,^a M. J. M. de Almeida,^a E. J. Tavares da Silva^b and F. M. Fernandes Roleira^b*

^aCEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516 Coimbra, Portugal, and ^bCentro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, P-3000-295 Coimbra, Portugal

Correspondence e-mail: jap@pollux.fis.uc.pt

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å Disorder in main residue R factor = 0.036 wR factor = 0.110 Data-to-parameter ratio = 8.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

3a,7a,12a-Triformyloxy-24-nor- 5β -chol-22-ene

The title compound, $C_{26}H_{38}O_6$, has a *cis* junction between two of the six-membered rings (A and B). All three of the sixmembered rings have chair conformations that are slightly flattened and the five-membered ring has an unusual 13β envelope conformation. The 7α and 12α ring substituents are both axial and the 3α and 17β groups are equatorial and pseudo-equatorial, respectively. The 3α -formyloxy group is involved in one weak intermolecular C-H···O bond, which links the molecules into dimers in a head-to-head fashion.

Comment

Bile acids, such as cholic acid, have many uses in supramolecular chemistry (Davis, 1993). The crystallographic study of these receptors and their synthetic intermediates improves the understanding of molecular-recognition principles. In this context, the 3β isomer of the title compound, (I), has already been studied (Andrade *et al.*, 2004). In an attempt to construct a cholic acid-based synthetic receptor, (I) has been synthesized as an intermediate according to the method reported by Davis & Walsh (1996).

An *ORTEPII* (Johnson, 1976) plot of (I) is shown in Fig. 1. The three formyloxy groups have 3α , 7α and 12α configurations. Average values for bond lengths are in good agreement with reported values (Allen *et al.*, 1987).

The distance between the terminal atoms O31*A* and C23 is 13.841 (8) Å, and the C19–C10···C13–C18 pseudo-torsion angle $[-1.6 (2)^{\circ}]$ indicates that the molecule is not twisted. Rings *A* (C1–C5/C10), *B* (C5–C10) and *C* (C8/C9/C11–C14) have slightly distorted chair conformations, with average torsion angles of 56 (2), 53 (2) and 53 (2)°, respectively, as shown by the values of the θ puckering parameter (Cremer & Pople, 1975) of 174.7 (3), 7.5 (2) and 4.5 (2)° for rings *A*, *B* and *C*, respectively. A *cis A/B* ring junction characteristic of the 5 β configuration is evidenced by the bowing angle between ring *A* and the least-squares plane of the remaining rings [56.57 (9)°]. The five-membered ring *D* (C13–C17) assumes a Received 4 April 2006 Accepted 7 April 2006

2614 independent reflections

3 standard reflections

frequency: 300 min

intensity decay: 9.6%

 $w = 1/[\sigma^2(F_0^2) + (0.0576P)^2]$

+ 0.1662P]

(Sheldrick, 1997)

Extinction coefficient: 0.0046 (7)

 $\begin{aligned} R_{\rm int} &= 0.053\\ \theta_{\rm max} &= 72.5^\circ \end{aligned}$

1905 reflections with $I > 2\sigma(I)$

Figure 1

A drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

13 β -envelope conformation [puckering parameters $q_2 = 0.480$ (3) Å and $\varphi_2 = -175.7$ (4)°; pseudo-rotation (Altona *et al.*, 1968) and asymmetry parameters (Duax & Norton, 1975): $\Delta = 26.2$ (4), $\varphi_m = 48.6$ (2), $\Delta C_s(14) = 30.4$ (3), $\Delta C_2(13,14) = 17.5$ (3), $\Delta C_s(13) = 5.4$ (3)°]. This unusual ring conformation is different from that found in the 3β isomer (Andrade *et al.*, 2004).

The 3α substituent is equatorial, with an angle of 70.86 (19)°, and the two 7α and 12α substituents are axial (Luger & Bülow, 1983), with angles of 7.91 (19) and 4.71 (18)°, respectively (the angles are between the substituent bond to the ring and the normal to the mean plane of the ring atoms). The 17 β chain is pseudo-equatorial. The orientation of the C5–C17 reference plane relative to the C17/C20/C21 and C20/C22/C23 least-squares planes is characterized by angles of 26.1 (4) and 86.8 (3)°, respectively, with the angle between these two planes being 89.4 (3)°. The C17–C20–C22–C23 [-116.1 (4)°] and C21–C20–C22–C23 [119.6 (5)°] torsion angles are similar to those found for the 3β isomer [-109.7 (3) and 126.7 (3)°; Andrade *et al.*, 2004].

The intra- and intermolecular $C-H \cdots O$ hydrogen-bonding network of (I) (Table 1) is also similar to that of the β -epimer.

Experimental

The title compound was prepared according to previously described procedures, starting from the formylation of cholic acid (Tserng & Klein, 1977) with formic and perchloric acids, followed by oxidative decarboxylation (Concepción *et al.*, 1986) with iodosobenzene diacetate. Crystals of (I) suitable for X-ray analysis were obtained from an ethyl acetate solution by slow evaporation.

Crystal data

CarHanOr
M = 446.56
Monoclinic P2.
a = 10.8379 (11) Å
b = 8.3682 (11) Å
c = 13.621 (8) Å
$\beta = 95.92 (3)^{\circ}$
V = 1228.7 (8) Å ³

Z = 2 $D_x = 1.207 \text{ Mg m}^{-3}$ Cu K α radiation $\mu = 0.68 \text{ mm}^{-1}$ T = 298 (2) K Prism, colourless $0.24 \times 0.20 \times 0.20 \text{ mm}$

Data collection

```
Enraf-Nonius MACH-3
diffractometer
Profile data from \omega/2\theta scans
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.774, T_{\max} = 0.873
5138 measured reflections
```

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.110$ S = 1.012614 reflections 312 parameters H-atom parameters constrained

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.11 \text{ e } \text{\AA}^{-3}$ trained Extinction correction: SHELXL97

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2B\cdots O31A^{i}$	0.97	2.59	3.5331	164
$C4-H4A\cdots O7$	0.97	2.43	3.0662	122
C14-H14···O12	0.98	2.54	2.9286	104
C17-H17···O12	0.98	2.48	2.8947	105
$C22-H22\cdots O31B^{ii}$	0.93	2.57	3.3366	140
$C31A - H31B \cdot \cdot \cdot O121^{iii}$	1.13	2.59	3.6611	158
$C121 - H121 \cdots O31B^{i}$	0.93	2.42	3.2211	144

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z$; (ii) x + 1, y - 1, z; (iii) x - 1, y, z.

H atoms were positioned geometrically, with C-H = 0.93 and 0.98 (for methine H), 0.93 and 0.97 (for methylene H) and 0.96 Å (for methyl H), and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H. Friedel pairs were merged because the anomalous dispersion of the light atoms at the Cu $K\alpha$ wavelength was negligible, and thus the absolute configuration was not determined from the X-ray data. However, the configuration was known from the synthetic route. In the 3 α branch, one O atom, one C atom and one H atom were refined with statistical disorder over two positions, with site occupancies of 0.613 (8) (for O31A, C31A and H31A) and 0.387 (8) (for O31B, C31B and H31B).

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *PLATON* (Spek, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

This work was supported by Fundação para a Ciência e Tecnologia.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.
- Andrade, L. C. R., Paixão, J. A., de Almeida, M. J. M., Tavares da Silva, E. J., Sá e Melo, M. L. & Fernandes Roleira, F. M. (2004). Acta Cryst. C60, 082– 083.

- Concepción, J. I., Francisco, C. G., Freire, R., Hernández, R., Salazar, J. A. & Suárez, E. (1986). J. Org. Chem. **51**, 402–404.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Davis, A. P. (1993). Chem. Soc. Rev. 22, 243-253.
- Davis, A. P. & Walsh, J. J. (1996). J. Chem. Soc. Chem. Commun. pp. 449–451. Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.
- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Luger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431-432.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tserng, K.-Y. & Klein, P. D. (1977). Steroids, 29, 635-648.